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1. INTRODUCTION

Analysis and design of periodic structures is important to many areas of microwave and
antenna engineering. For example, in designing equipment enclosures to suppress electromag-
netic interference (EMI), one may need to know the amount of radio frequency (RF) penetration
through periodic screens such as perforated metal, wire grids, or reinforced concrete. In anten-
na design, periodic structures may take the form of: frequency selective surfaces (FSSs) [1],[2],
proposed for use as subreflectors and interference-suppressing radomes; polarizers [3]; artificial
dielectrics [4] for lightweight lenses; and angular filters for sidelobe suppression [5]. Periodic
structures also appear in the field of optics, as diffraction gratings and bandgap filters. But in
optics, as in radio frequency applications, the behavior of these devices is essentially electromag-
netic. In most cases, acceptable performance prediction is obtainable only with analytical meth-
ods that account for mutual interactions between elements of the structure. The available tools
have, to date, been based on mode matching and moment methods. Their most significant
limitations were: (1) inability to model "inhomogeneous” dielectrics (anything other than contin-
uous planar slabs); and (2) restrictions on the shape and/or orientation of conducting elements,
requiring a separate computer code for each of many classes of geometries. This report de-
scribes a new analysis technique that employs the hybrid finite element method (HFEM) in order
to permit full wave analysis of very general periodic structures containing dielectric inhomogene-
ities and arbitrarily-oriented conductors. It is an extension of previous work in modeling phased

array antennas [6].




2, BACKGROUND

2.1. Problem Description

The generic problem to be addressed is electromagnetic transmission through large,
planar periodic structures. They are assumed to be large enough that edge effects are negligible,
allowing use of an infinite structure model. This restricts the analysis to a single unit cell that
is typically a fraction of a wavelength on each side at the frequencies at which the device is
designéd to operate. Figure 1 illustrates the general problem geometry and defines the notation
conventions used throughout this report.

The structure may include conducting obstacles with arbitrary shape, and any number of
dielectric regions with distinct permittivity, €, and permeability, u. The dielectrics are isotropic
(their properties are not a function of direction) and linear (their properties do not depend on the

magnitude of the fields). The structure lattice may be skewed, as illustrated in Figure 1b.

2.2, Solution Method Overview

The solution technique is a hybrid of the finite element method (FEM) with an integral
equation representation for fields above and below the structure. The unit cell is truncated at
planes of constant z above and below the structure so that all of the materials (dielectrics and
conductors) are between the surfaces denoted Pz_ and ', , which will be referred to as the
lower and upper radiation boundaries, respectively. The volume thus formed by the truncated
unit cell will be denoted by Q.

The free space and dielectrics inside Q will be subdivided into small volume elements
(tetrahedra), referred to as “cells." The electric field will be represented in terms of simple

expansion functions or "finite elements" defined relative to cells. The particular form used in
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Figure 1. Representative Problem Geometry: (a) Side view showing upper and
lower radiation boundaries; (b) top view of array lattice showing unit cell boundaries




this work is the linear vector edge-based finite elements. Figure 2 shows an example tetrahedron
"mesh" for an FSS made up of a skewed lattice of crossed dipoles backed by a dielectric layer.
The shading shows the location of the conducting elements, which are represented here by
infinitesimally thin conductors. Thick conductors would be represented as voids in the mesh.

There are two kinds of periodic boundary conditions to be enforced. One is the periodic
radiation condition, which expands the fields above and below the structure in terms of "Floquet
modes.” The second condition enforces periodicity across unit cell side walls.

The solution is implemented by constructing and solving a matrix equation:

[R][SF—+SI+SF+][R]HE - Eim: (1)
The matrix S! is a sparse matrix arising from the interior finite element solution. Its size is

NXN, where N is the number of edges in the tetrahedron grid, excluding those lying along

Figure 2. Example Tetrahedron Mesh: Crossed Dipole FSS Element in Skewed Lattice




perfectly conducting surfaces. Assuming that the edges are ordered so that the first are in I',_
and the last are in I, , then the matrices ST-and ST due to the periodic radiation conditions,
are zero except for dense upper left and lower right submatrices, respectively. Finally, multipli-
cation on the left by the matrix R and on the right by its Hermitian (conjugate transpose) imple-
ments the side wall periodicity condition. The right side vector E™ is due to a unit-amplitude
plane wave (the dominant Floquet mode). Its entries are zero except for those corresponding
to edges in I',_ . Solution of the system of equations gives the vector E, from which reflectivity
and transmissivity are computed.

The following chapter will give the details of how each of the terms in the above matrix
equation is derived from electromagnetic theory and from the methods of finite elements.
Chapter 4 will discuss how it was implemented in a general-purpose computer code. Chapter

5 will show the results for several validation and demonstration cases.




3. THEORY
3.1. The Weak Form of the Wave Equation

Finite element solutions are usually based on discretization of a "variational principle”
or of 2 "weak form." Application of the Rayleigh-Ritz method to the variational principle
results in the same matrix equation as does application of Galerkin’s method to the weak form

[6:102-103].

The wave equation for the electric field in linear, isotropic, inhomogeneous media is

VX LUXE-kie,E =0 @
Ky

where k, is the free space wavenumber, and the relative permeability, p,, and permittivity, e,

may be functions of position. The inner product of (2) with a weighting function W is

ﬁﬁ/*o[inVxE—kgerE]dv=0 3
0 b
Using a Green’s identity:
f L yxwe UXE-K2e, W -E | dv - ji%%/*wxéoﬁdwo @
0 Mr er

where T is the union of all boundaries enclosing Q as well as conducting surfaces inside .
Equation (4) is called a "weak form" because the Green’s identity shifted one of the derivatives
from E to V_\V, weakening the differentiability requirement on E. The final form is obtained by

using the Maxwell curl equation VXE = -jwuﬁ and the constitutive relation wp = kg :



I[iVxﬁz*-VxE-kge,v"v*-E dv—jkonOJv—V*e(ﬁxFI)ds=O )
By
Q r

The term on the right, a surface integral over all boundaries enclosing (2, provides the mecha-
nism for enforcing boundary conditions. On the open parts of T, suitable expressions for the
tangential magnetic field may be substituted to impose radiation boundary conditions, as dis-

cussed in Section 3.4.
For perfect conductors, the second integral above becomes zero. The tangential electric
field is zero, so admissible functions for E, and hence also for ﬁ’, are those whose tangential

component vanishes at a perfectly conducting boundary.

3.2. Finite Element Representation of the Electric Field
The electric field will be expanded in "finite elements," which are functions defined
locally within each tetrahedral cell. The "linear edge elements" are defined relative to two mesh

nodes 7 and j that bound a mesh edge [7]-[9]:

Vij = Lyj(fi VI -V 1) ©)
where L;; is the length of the edge. The scalar functions f; and f; have the value 1 at node i or
J, respectively, and decrease linearly to O ar the other three nodes in the cell. The vector func-
tion T/fij is normal to the faces opposite nodes i and j. Its component along edge ij is a unit
vector. Now the electric field is approximated by

_ N
E=E-=Y e./(x,y,2) @)
s=1

where e is a scalar, complex coefficient representing the field magnitude and phase along the




edge s. This expansion makes it a trivial matter to enforce boundary conditions along perfect
conductors, even at sharp edges and points. It also ensures that spurious modes will not be
generated [10]. Furthermore, it correctly enforces continuity of the normal electric field across

dielectric interfaces [11]. All three of these are reasons it is preferred over the scalar expansion

E = Te,f, (defined relative to nodes).

3.3. Interior Discretization

The elements of the sparse matrix St in (1) are due to the volume integral term in (5).
Substituting the expansion (7) for E and using each v/, in turn as a weighting function (Galerkin’s

method):

1 1y 7 2. T T
sz = f [iur vx%tbvxgsﬂkoerw‘t”’%]d‘j
Q

®

st

where (1, denotes the union of all cells that share edges s and .
The integrations in (8) are carried out with the help of a coordinate transform local to
each tetrahedron (called "simplex" or "barycentric" coordinates ) [12:266-274]. Let U denote

the matrix formed using the four vertex coordinates;

1 X1 Vi 24

1 XZ yz )
U= C))
1 X3 V3 23

L oxy ¥ 2

and let T be the matrix of the 16 cofactors of U. There are four coordinate directions #;...¢4in

the tetrahedron given by



1
tp = = (Tia +xTip +¥Tig + 2T54 | (10)

where V is the cell volume. Since ¢ is equal to unity at node i and goes linearly to zero at all
other nodes, it is the correct form for the scalar finite element function, and f; = ;. The

gradient of f; is
Vfi = [RTip + 9 T3+ £ T3] (11)

The curl of the finite element, V X JS, is also needed in evaluating the integrals in (8). For that,

the following vector identity is used:

VX(f,Vf) = f,VxVf,+ Vf, xVf, (12)
Note that the first term on the right in (12) is zero since it is a second derivative of a linear
function. Consequently,

VX, = VX(iVE-£VS) )
=2Vf; XV jj
To evaluate the contribution of a cell & to (8), let i and j denote the local indices of the

nodes bounding edge s; and let m and n denote those for edge ¢. All four of these local node

indices are between 1 and 4. The first integral term in (8) will be

11 4V,
Setk = —<LL VS XVf; * VXYY, (14)
4V,L.L,

w6V, )
+ (Ti4Tjy - TipT4) (T 410 ~ T This) (15)

[(Ti3Tj4 = T34Tj3) (T3 T4 = Ty g Tp3)

+ (T3 = Ti3Tj) Ty T3 = T3 Ty0) |




And the second volume integral term in (8) will be

SI2 = ke LI, ﬁ‘ [fifon VS5 o VS =SSV VS,

stk i (16)
=[S Ve Vo 1S V] v

Since the gradient terms in (15) are constants, they may be taken outside the integral, leaving

four terms of the form

I; = Jﬁﬁdxdydz 17
@

which transform to simplex coordinates as [12]

1;dt (18)

where 1/6V), is the Jacobian of the transformation. This integral evaluates to

I.. =

ij 20(1+6 ) (19)

where 5;7 is the Kronecker delta. Finally, (16) reduces to

4
n Ke Ll
Ssik = ™55 ‘g [(1+8;,) Ty - (1+8;,) Ty, 20)

= (1+8;,) T Ty + (1+8;,) Ty Ty |

Each matrix entry S”SII is the sum of contributions from (15) and (20) from all cells that share
edges s and 7. Thus, those two equations give the interior matrix entries as closed-form algebra-
ic expressions that depend only on the cell geometry, its constitutive parameters, and the wave-

number. The following two sections show the derivation for the entries in the matrices pertain-

10




ing to the radiation boundaries.

3.4. Mode Functions and the Periodic Integral Equation

The top and bottom of the unit cell are free space boundaries where a radiation condition
must be applied. The method for doing so is to substitute an integral equation for Aix H into the
boundary term of the weak form. Due to the periodic nature of the problem, the integral
equation may be written as a summation over "Floquet modes" [13].

Let the electric field above and below the structure be expanded in a set of mode func-
tions §pmn, where the subscript p is 1 for transverse electric (i.e. Elz) or 2 for transverse

magnetic (i.e. Hl 2):

J (Kxmn* * Kymn¥) 1)

vk

xmn)

h = ymn ~
Imn ~ - (22)
\/ dy \/kxmn ymn
1 Ak +Vk
o ” = ymnz) (23)
\/ d}’ kamn ymn
Kymn = kosinycos ¢p - 2;"" B 24)
X
kymn = kg sin 0, sin ¢ - 2mn + 27"";00t'y 25)
Y x

where (0;,¢¢) is the angle toward which the incident wave is propagating, (m,n) is the mode

index and 7 is the lattice skew angle.

11




At any point above the structure, the transverse electric field may be expanded in modes
traveling in the +z direction:

_ 2 co co
ENz>0)=5 5 % CounBpmae ™ (26)

p=1 m=-00 p=-00

2 .2 2 172
Kmn = [kO _kxmn _kymn] @7

where CT_is an unknown coefficient. The transverse magnetic field in each mode is

pmn
st 3
Z prmn(z> 0) = ~YpmnEpmn (28)
where Y, is a modal admittance:
Ylmn = “mn (29)
koo
k
Kmn Mo
The total magnetic field above the structure is
FXHz>0) = Z E z Cpmn i gpmn _]Kmnz 31)

n

In order to write the right side in terms of E !, the orthogonality property

Zpmn “ 8qij DY = 8,,8,,:0,; (32)

unit cell

is used to solve (26) for the coefficients:

12




c: = jE’-E,fm,,dxdy (33)

unit cell

with the result

L= - =; —=x JKmn 2
ixH'(z>0) = - % Yyrn Zpmn j E' gy, dxdy e (4)
p m n

unit cell

On the lower unit cell boundary, the transverse electric field includes an incident field
term in one of the two lowest order modes depending on whether it is transverse electric (g=1)

or transverse magnetic (q=2):

2 o o .

,l_i"(z<0) = gqooe'f"‘ooz + Z E E C;;mn —g-pmnejxmnz (35)

p=1 m=-o p=-o

The signs of the exponential terms indicate the direction of propagation. Again, using the
modes’ orthogonality property,

Cpmn = J E' 'E;mn dxdy - 6pq 0,m00n0 (36)

unit cell

giving the magnetic field below the structure as

(X @<0) = =X X % YpmnBpmn | E' Epun iy ¢ fmn’
p m n unit cell @37
+2Y,008400 e
The above expressions (34) and (37) are the integral equations that are substituted into the weak
form (5) to enforce the radiation conditions. The following section derives expressions for the

resulting matrix terms.

13




3.5. Periodic Radiation Boundary Terms

The matrix entries SE?, pertaining to the upper radiation boundary, are found by substi-
tuting ¢, for E*%in (34), then substituting (34) for AXH and ¥, for W+ in Bq. (5):

I+ . - ] - / ~J #mnZ
Sst = +]k0770ﬂﬂ>ai° ) Ly Ypmngpmn dy J[Js ° gpmn] dye (38)
pman
r T

z+ Fas

Each integral term contains a term in exp{%jk,,* + kymny)} , which, besides the finite ele-
ments, is the only term with x or y dependence. Let Ez(kx,ky) denote the two-dimensional

Fourier transform of that part of Y, lying on the radiation boundary:

— - < j(kxmnx tk mny)
ﬂ‘ Ve Bpmn Xy = By ® ﬁJ,e Y dx dy

=h o Ez(k ko) (39)

xmn>™ymn

= hpmn * Etmn

Now the matrix entries may be written in the more compact form

T+ . = %
Sse =Jkono LL L Eupn * [Ypmn hpmnhpmn] * Esmn (40)
pmon

Finally, the term in brackets may be simplified by summing TE and TM modes:

oo -

I+ . = "
Sy =iko0 T Evmn® Ton® Esmun @1)
m n

5 o 2 1-172 2_,2
R vt il R R “2)
mn
d,d, ko, Kmn Kymn (Ko ~Kamsn)

The expression for the matrix pertaining to the lower radiation boundary is identical to (41).

14




This follows from the fact that the summations in (35) and (37) are the same except for the sign
of the exponent inside the integral. In evaluating those integrals, the value of z in the exponent
is taken as zero because it represents only a constant phase factor.

This concludes the derivations for the entries in various parts of the matrix S. The

following section discusses the matrix transformation that imposes a periodicity condition on the

open unit cell side walls.

3.6. Side Wall Periodicity Condition
3.6.1. Boundary Wrapping Concept

To understand how the transformation matrix R in (1) is created, it is important to recog-
nize that the unit cell mesh is actually part of an "infinite mesh.” A portion of the mesh is
replicated identically within each unit cell. An essential requirement is that the mesh continues
unbroken across unit cell boundaries, which implies that the mesh on a unit cell side wall is an
exact replica of that on the opposing side wall. Section 4.1.2 will discuss how to accomplish
this "mesh continuity" using a typical commercial mesh generation program.

The system of equations formed by (15), (20) and (41) contains one unknown per mesh
edge. But because of the Floquet condition, the fields on opposite side walls are identical except
for a constant and known phase shift that depends only on the unit cell size and the scan angle.
Consequently, the linear system is overdetermined becéuse there is a linear dependence between
unknowns associated with image edges. For example, if e, is the electric field along an edge

in I', ., then the field along the corresponding edge in T, _ is
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e, =ee’% ser ser 43)

B, = kg sinfy cosd g (44)

Similarly, the fields for corresponding edges in I'y, and I'y_are related by

€S/=<8

i(8,d, coty +B,d,)
L O TR ser sleT) (45)

ﬁy = ko sinfy sing (46)
Because of this dependence, the linear system may not be solved until it is reduced by combining

dependent rows and columns.

One way of viewing the reduction procedure is the following: The infinite mesh will be
recreated from the unit cell mesh by "wrapping" opposite sides onto each other with an approp-
riate phase shift. This will merge the image edges, thus eliminating dependent unknowns from

the linear system. There are two implementations: the matrix transformation indicated in Eq.

(1), and algorithmic implementation.

3.6.2. Matrix Transformation

The matrix transformation is executed by multiplying on the left by a reduction matrix
R and on the right by its Hermitian. This relies on a special ordering of the unknowns, with
those in the side walls last, so that they make up the lower right portion of the matrix S.

R is MxN, where N-M is the number of edges on I', , and Iy, combined. Its first M
columns are the MxM identity matrix. In the remaining columns, there is an entry R, for each

pair of image edges:
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3.6.3. Algorithmic Implementation

It is not actually necessary to impose the side wall condition as a matrix multiplication,
and it is actually undesirable since it requires additional computer storage. The same end result
is obtained by executing the following algorithm. It has the added advantage that the edges do

not have to be ordered with those in the side walls last.
I. FOR EVERY EDGE s ON +x BOUNDARY:
A. LOCATE IMAGE EDGE s’ ON -x BOUNDARY
B. FOR EVERY EDGE t SUCH THAT S, #0:
1. IF t IS ON THE + x BOUNDARY, THEN:
a. LOCATE IMAGE EDGE t'
b. SET Sgu= Sgy + Sy
c. SET S, =0
2. ELSE IF t IS NOT ON THE +x BOUNDARY, THEN:
a. SET S, = S, exp{jB,}
b. SET S, = S, exp{-if,}
c. SET Sy =8,=0
II. REPEAT I FOR +y AND -y BOUNDARIES
III. COMPRESS THE MATRIX (ELIMINATE ZERO ROWS & COLUMNS)

IV. COMPRESS THE INCIDENT FIELD VECTOR
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3.6.4. "QOverlap Elements" on the Radiation Boundaries

The two periodicity conditions, one for side walls and the other for radiation boundaries,
must work in concert, neither duplicating nor opposing each other. Gedney first establish a
straightforward method for doing so in two dimensions, which he called "overlap elements”
[14]. In computing the terms of (1) pertaining to the radiation boundaries, those edges in T, |
and Fy+ are ignored. There are no terms in ST+ or ST- for those edges. However, edges in
T, and T'y_are treated as though they were part of triangular elements extending into adjacent
unit cells. That is, the finite elements connected to those edges "overlap” the unit cell bound-
aries. This method actually resulis in a simpler algorithm than Eq. (1) suggests, since the matrix

transform need only be applied to st

3.7, Incident Field Terms

The right side vector in the matrix equation arises from the second term on the right side
of (37), due to a unit amplitude incident electric field arriving from z<0. Its form is a plane

wave, which is the 0,0-order Floquet mode. Along edge #:

e, = Jkong ﬁ U (2¥5008400) dxdy (48)
r

z-

where, again, the constant phase factor exp{-j «,,, z} is ignored. Taking all of the terms outside

the integral that do not depend on x and y:

J (KepoX + kyooy)

e, = =2jkgmo Yy00 2400 ° J Ve dx dy (49)

r

z-

Note that the integral is the two-dimensional Fourier transform of the finite element’s tangential
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component on I',_, written as £,,,. Note also that:

2 2 2 .2
ko0 * Ky00 = Ko sin“fy (50)
cosf

0 g=1

: Mo (1)
YqOO = 1
—_— =2
10 €08y
and now (49) may be rewritten in the form

£ . ~2jk, | cosfp(£sindy-Fcosdg) - £,00 =1 52

! d.d sec 0y (£ cos ¢y + P sin ¢g) * g:oo q=2

X7y

The solution of the resulting system of equations gives the vector of unknown coefficients E in
(1). The following section shows how these edge-field coefficients are used to find the transmis-

sion and reflection coefficients for the structure.

3.8. Transmissivity and Reflectivity

The most important quantities to be found from a periodic structure analysis are the
surface transmissivity and surface reflectivity. These complex quantities provide knowledge of
how the incident power divides itself between transmitted and reflected components, as well as
the phase delay of the transmitted component.

The transmission coefficients for each mode are given by (33), since C;',’ mn TEDTESEnts
the excitation of each mode propagating away from the array in the -+z direction. However,
when the transmission is into a different mode than the incident wave, such as in the case of

grating lobes and Bragg lobes, the transmission coefficients need to take into account the differ-

19




ence in modal admittances. Letting T;mn denote the transmission coefficient:

Y, . = =
f;"m - Z & _— 5smm ohpmn (53)
sel,, Yqoo

The greatest interest is usually in the lowest order transmission coefficient in the m=n=0 mode,

especially when dx,,dy < .5\, in which case all higher order Floquet modes are evanescent. The

lowest order transmission coefficient is the sransmissivity, given by

+ e oy =
Tooo = 0, ———= {00 Py | Ypoo (54)
seT,, dx dy Y
q00
Xsin ¢y —Jcos ¢g p=1 (55)
or ~ fcosgy +Psing, p=2

The modal reflection coefficients are found from (36). Except for the m=n=0 mode, they are

as given by (48) above, with I'- replacing I'+. The lowest order coefficient, the reflectivity, is

_ e, = _
Tpoo = Z gsOO Pp~ 61741 YPOO (56)
sel,_ dx dy Y 00
q

This concludes the presentation of the theory and formulation. The next chapter address-

es various aspects of the implementation in a general-purpose computer code.
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4. NUMERICAL IMPLEMENTATION

4.1. Geometry Generation

4.1.1. CAD Geometry Definition

The finite element geometries are generated using a commercial "CAD" software package
such as I-DEAS™ [15]. The objective is to create a numerical description of a complex geome-
try that the electromagnetic analysis code can interpret unambiguously. The general steps the

user takes in the geometry generation process are:

Construct a wireframe geometry of points, lines and arcs

Use the curves (lines and arcs) to define surfaces

Group curves into mesh areas

Group mesh areas into mesh volumes

Generate the tetrahedral elements by subdividing mesh volumes
Tag elements (cells) with material properties

Tag nodes with boundary condition flags

NOANER LN

Steps 1-5 are fairly generic, although the details may be peculiar to the particular software

package used. Steps 6 and 7 will be described in further detail in sections 4.1.3 and 4.1.4.

4.1.2. Unit Cell Side Wall Geometry Definition

A troublesome part of the periodic structure geometry generation is ensuring that the
mesh on opposite unit cell faces lines up correctly. In order for the side wall periodicity condi-
tion to work, each side wall edge must have an identical "image" on the opposite side wall, with
the same length and orientation. Each edge on the +x boundary must have an image on the -x
boundary that has the same node coordinates except for a translation of (d,,0,0). Each edge on
the +y boundary must have an image on the -y boundary that has the same node coordinates
except for a translation of (d,coty,d,,0). Figure 3 shows an example in which all of the geome-

try is blanked out except for the mesh on the unit cell perimeter, which is viewed from a point
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Figure 3. Side View of Example Mesh - Surface Grid on Unit Cell Walls Only
at a slight angle off the +x axis: The two sets of lines making up the side wall meshes overlay
each other perfectly (only one set would be visible if it were viewed from a point on the x axis),
which is the desired situation.

The I-DEAS™ software does not provide for achieving the result in Figure 3 directly.
Instead, one must rely on the computer program’s inherent repeatability. First, the lines that
make up the unit cell outlines must be created with care to their direction, as indicated in Figure
4a. The mesh generation takes some of its cues on where to begin meshing an area by where
lines begin and end. Hence, the lines that make up opposite side walls must have the same
orientation. Next, the mesh areas that make up the unit cell perimeter must be defined first,
before the top and boitom or any paris of the interior. This ensures that those areas will be
meshed first, so the size and orientation of their triangular elements will not depend on interior
details. Furthermore, the ordering of these mesh areas should be such that opposite walls are
meshed sequentially, for example, -x, +x, -y, and +y. Finally, the curves making up opposite
side wall mesh areas must be grouped in a consistent order. Figure 4b illustrates this by show-

ing the order that curves are selected to make up the +x and -x side walls. These steps are
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Figure 4. Direction and Sequence for Defining Curves and Mesh Areas to Achieve Identical
Meshes on Opposing Unit Cell Side Walls: (a) Curve Directions; (b) Order of Selection
for Curves to Make up Mesh Areas

generally adequate to ensure that I-DEAS™ will produce identical grids on opposite unit cell

side walls.

4.1.3. Conductor Boundary Conditions

There are various ways that any CAD package may be used to tag nodes in order to
signal the electromagnetic code that they represent conductors. One easily-overlooked difficulty
pertains to the way conducting boundaries are represented by the edge-based finite elements.
If a mesh edge lies along a conductor, its tangential electric field must be zero. Therefore, there
will not be any entries in the system of equations or in the matrix for those edges. However,
there can be a field along an edge that joins two parts of the same conductor through free space
or dielectric. Consequently, it is not adequate to simply tag all conductor nodes the same. The

approach adopted in this work is to allow each node to belong to any or all of a range of con-
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ducting surfaces, with a different tag for each. For example, the crossed dipole element in
Figure 2 consists of two conductor groups: one for the horizontal arms; and another for the
vertical arms. The nodes at the junction will belong to both groups. This allows the existence

of a field component along diagonal edges joining vertical and horizontal arms near the junction.

4.1.4, Node-Based to Fdge-Based Geometry Conversion

Commercial CAD programs, usually geared toward mechanical engineering, generate
geometry descriptions in terms of mesh nodes. Their typical output consists of a listing of node
coordinates, then a listing of the node indices that define each element. The edge-based geome-
try adds a listing of edges by pairs of nodes. Another useful data structure is a listing of ele-

ments and the six edges that comprise each.

It is convenient, for this periodic structure problem, to order the edges so that those in
the two radiation boundaries are first and last. As discussed in Section 2.2, this causes the two
matrices associated with those boundaries to be zero except for dense upper left or lower right
submatrices.

A crucial consideration is that the vector edge elements have direction. Throughout the
matrix computations those directions must be accounted for. Referring to Eq. (6), the vector
function is directed from the node i to the nodej. A useful convention is to define the direction
of an edge as being from the lower to the higher global node index.

While the matrix solution finds the field values along mesh edges, it is often useful to
calculate the field at nodes. Node values are compatible with the commercial CAD software,
which can be used to generate "rendered” plots of field lines or field contours superimposed on

the geometry. The conversion procedure amounts to reconciling the two approximations
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G7)

where f, is the conventional node-based finite element.

Consider the field within a single tetrahedron at a coordinate . If r is much closer to
‘node i than to any of the other three nodes j, k, and [, the value of f; is nearly unity, while f;,

fi» and f; are nearly zero. Then the nodal approximation to the field is
E(M = ¢ f; (58)
The field due to the edge expansion is almost entirely due to the three edges leading into node

i since that of the three opposing edges depends only on J§, Sy and fy:

E(r) = Lije; fiVfi+Lyeuf;iVhi+Lyeyf;V (59)
Equating (58) and (59) gives
e; = Lie;Vi+LyeaVi+LyeyVh (60)
Due to the piecewise linear nature of the approximation for the electric field, the right hand side

of (60) may be slightly different within each cell bordering on the node, so the conversion

procedure takes the average over all cells adjacent to the node.

4.2, Matrix Data Structure and Computations

To take advantage of the matrix sparsity, an iterative solution is anticipated. This is as
much for reasons of storage as for solve time. An enormous savings in computer memory can
be realized by storing only the nonzero matrix elements. However, a "direct" solver, based on

Gaussian elimination (usually LU decomposition) creates new elements as the solution proceeds,
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so that the LU factors are less sparse than the original matrix. Iterative solvers such as the
conjugate gradient method (CGM) [16] and biconjugate gradient method (BCGM) [17], discussed
further in Section 4.3, operate by making successive guesses at the solution vector, always using
the original matrix. Therefore, they require minimum storage. They also usually require less
execution time than ordinary LU decomposition.

Based on the above rationale, the data structure employed in this solution used three
separate arrays. The two radiation boundaries are represented by storing the dense upper left
or lower right submatrix in a two-dimensional array. The sparse interior matrix entries are
stored as a one-dimensional array, with {wo integer arrays giving the row and column index of
each entry. Of course, there are sparse matrix storage schemes that get by with only one integer
array [18]. However, it is most convenient to execute the finite element computations one cell
at a time, rather than one edge at a time. The matrix entries for edge pairs are created in what-

ever order those pairs are first encountered when stepping through the cells.

4.3, Matrix Solution

Two separate iterative matrix solvers were implemented and tested as part of this work.
The first is the conjugate gradient method (CGM). It did not fail to converge during any of the
validation cases attempted. The second solver, the biconjugate gradient method (BCGM),
usually converged much faster than CGM. However, there were several cases for which it did

not converge at all, most notably resonant-element FSSs at frequencies near resonance.

4.3.1. Conjugate Gradient Method

The essential CGM algorithm is given by Sarkar and Arvas [16]. The procedure to solve

AX = B for the unknown vector X begins with an initial guess Xj;, giving an initial residual error
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vector Ry = B - AX,,. The initial search direction and gradient vectors P, and Gy are

(The superscript H denotes Hermitian, that is, conjugate transpose.) The iteration consists of

the following steps using || - || to denote the L, norm:

2
;= " Gi " . (62)
lap;|
Xiv = X;+o; P (63)
Riyy = Rj-o;AP; (64)
Gi+l = AHRI+1 (65)
2
.= " Gi+1 " (66)
|G, |I?
Piyp = G *+B: P; 67)

A typical convergence test is to examine the ratio e = (|| R;||2/ || Ry | ® at each iteration.
A value of 10 or 10 is usually adequate to ensure convergence of the transmissivity and
reflectivity. Figure 5 shows the convergence of the reflectivity from a single layer of spherical
conductors in a square lattice (discussed later in Section 5.3), along with the convergence of the

residual norm. Both of these quantities are converging monotonically.

4.3.2. Biconjugate Gradient Method

The generalized biconjugate gradient method re&uires an additional two 1xN complex
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Figure 5. Convergence of Residual Norm, Reflectivity and Transmissivity using
Conjugate Gradient Method

arrays for storage, which is usually tolerable. The search algorithm begins with the following

initial conditions [17]:

% =0 (68)
Wy = Qo = B” (70)

The vectors W and Q are in addition to R and P, which were required by the CGM. The
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following steps comprise the iteration procedure:

o = <RiaQi>
X = X+ oy P

Riyy = R;-o;AP;
Oy = Q- "4" W,
P,y = Riyy +B; P;
Wi = QB W,

Wip = Qi B, W,

(1)

(72)

(73)

(74)

(75)

(76)

(77

where (-, +) denotes the inner product of two vectors. Figure 6 shows the convergence of the

residual norm for the same test case as Figure 5. Unlike CGM, the residual norm does not

converge monotonically, or even gradually. Nonetheless, BCGM required less than .2N (N is

the number of unknowns) iterations to converge in this case, whereas CGM required 1.8N.
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5. VALIDATION
| The theory presented in Chapter 3, and the code design presented in Chapter 4, were
validated by comparing the code results for several test cases to analytical formulas, measure-
ments, or calculations made with other, fundamentally different methods. These results serve
to show that the new technique is accurate, flexible and dependable. These test cases were: (1)
a dual-layer inductive screen filter; (2) a wire grid array; (3) an artificial dielectric made of
conducting spheres; (4) a band-stop filter made of layered dielectric rods; (5) a lattice of crossed
conductor bars in a dielectric slab, emulating reinforced concrete; and (6) a crossed-dipole FSS.
The last section in this Chapter compares the computational effort required in terms of both

storage and execution time.

5.1. Inductive Screen Filter

The crossed conducting grid shown in Figure 7 is an inductive screen. (Its electromag-
netic "dual," conducting patches, would be a capacitive screen.) It functions as a high-pass
filter, reflecting most of the energy below the frequency at which the aperture spacing is one
wavelength. Combining two or more screens in series sharpens the frequency rejection, by
forming a cascaded, two-pole filter. |

Lee et. al. solved for the transmission characteristics of these screens using the mode
matching method [19]. This method expands the fields in a series of plane wave modes (Flo-
Iquet modes) [20]. It is a form of moment method in the sense that it is a matrix solution to a
frequency-domain integral equation. The expansion and testing functions are the plane wave
modes themselves (entire domain functions).

Figure 8 shows the representation of one unit cell of this structure by a tetrahedron mesh.
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The shaded areas indicate those cell faces that are defined as perfect conductor. The mesh
density is approximately 13 cells per wavelength at the highest frequency, which corresponded
to a unit cell width and height of one wavelength. For this test case, the spacing between
screens was d=.2a and the aperture size was a=b=.7d,=.7d,,.

Figure 9 shows the calculated power transmission through the double screen. The
agreement between the HFEM code and the moment method calculations from [19] is excellent.
This provided an initial validation of several features of the theory, such as the periodic radiation
condition, the side-wall periodicity conditions, and the interior finite element calculations. In
short, these results could not have been obtained if there were any errors in the theory or
implementation of the matrix equation derived in Chapter 3. It also verifies the correctness of

the formulation for the forcing function due to the incident field, and the subsequent calculation
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Figure 9. Comparison of HFEM and Method of Moments [19] Calculations for
Transmission through Two-Layer Inductive Screen: dx=dy, a=b=.7d,, d=.2a
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of transmissivity from the electric field solution.

This test case also illustrates that the FEM does not have any difficulty with sharp
conducting @dgcs, and does not require extraordinarily high grid resolution near such edges. It
also serves to illustrate that the outer surfaces of the material structure, conducting surfaces in
particular, may coincide with the radiation boundary. Hence, it is not necessary to add any grid

cells in free space above or below the structure.

5.2, Wire Grid Array

As mentioned earlier, wire grids can be used as angular filters to reduce the sidelobes
of an antenna. In addition, linearly polarized reflector antennas are often constructed from
parallel wires or bars in order to reduce weight and wind resistance. To properly design such
an antenna, it is necessary to know how closely the wires must be spaced to provide good
reflection at all incidence angles.

Decker performed measurements of transmission through a wire grid as a function of
angle, with the incident electric field polarized parallel to the wires [21]. He compared those
measurements to analytical formulas from Wait [22].

To use the hybrid finite element method for this calculation, the grid shown in Figure
10 was used. The short section of wire is represented as a void in the tetrahedron mesh, indicat-
ed by the shaded area. The grid is fairly wide in the x dimension, corresponding fo the spacing
between wires (1.5 cm). The wire radius is 1 mm.

Figure 11 compares the HFEM results with those given by Decker, both measured and
calculated (f=9.6 GHz). The HFEM calculations are somewhat closer to the measured data,

most notably at normal incidence. The discrepancy between the measurement and both sets of
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calculations at wide angles is most likely due to the fact that the test article was fairly small in
both width and length, allowing for diffractions from its edges.

It is, of course, quite inefficient to use a three-dimensional code for this inherently two-
dimension problem. However, it serves to illustrate that the HFEM code correctly models
situations in which infinite conductors are represented as objects projecting through opposite unit
cell walls. A later section presents a similar case in which wires (or bars) continue through

opposite unit cell faces in both directions, representing a grid of crossed wires.

5.3, Artificial Dielectric

Artificial dielectrics are synthetic delay media made up of dielectric or metallic obstacles
imbedded in a natural-dielectric medium, or binder. The obstacles are usually arranged in a
regular lattice and are individually much smaller than the wavelength at which the structure is
intended to function. Artificial dielectrics have the advantage that they may have refractive
indices that are much higher, for a given weight, than natural dielectrics.

One such medium is an array of metal spheres. When arranged in a cubic lattice, the
effective permittivity, permeability, and index of refraction may be estimated analytically using

conformal transformations. Lewin derived the following expressions [23]:

v rd 1-g (78)
-_1-¢ 79

Hr= o2 ' ()

_xD3[, 211 80
g = _67[1 12.96 (D/ A, )? ] (80)
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where ¢, is the relative permittivity of the binder material, A, is the wavelength in the binder,
D is the sphere diameter, and V is the unit cell volume. These formulas are expected to be valid

for D/A\; < .2 [4]. From (78) and (79), the effective index of refraction is

"= l:e 1+2¢ ]”2 @81)

_ 360nt (82)

Figure 12 shows a tetrahedron mesh of the air space surrounding a metal sphere. The
sphere diameter is 2 m, and the cube is 4 m on each side, so that V = 64 m> . Since the sphere
is an impenetrable conductor, it is represented as a void in the mesh.

The formulas (78)-(82) apply to a uniform, infinite medium. However, the calculations

are for a structure with finite thickness. Therefore, it will include edge effects at the surface
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Figure 12. Tetrahedron Mesh for a Conducting Sphere in a Cubic Lattice
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that are not accountéd for by the analytical model. To make a comparison, three separate FEM
models were used, consisting of 3, 4 and 5 layers of spheres, with layers separated by 4 m. The
differential transmission phase from (82) for a single layer is plotted as the solid line in Figure
13. The abscissa corresponds to increasing frequency with a fixed cell size. The discrete points
are the difference in transmission phase computed by HFEM with 3 and 4 layers (triangles) and
4 and 5 layers (circles). It is evident that as more layers are added, the calculations become
closer to the analytical formulas. The formulas are not accurate for D/A; > .2, corresponding

to d /N\; > .4, so the disagreement at the higher frequencies is expected.

5.4. Dielectric Bandgap Structure

Photonic bandgap structures are crystals in which certain photon energy states are forbid-

den. They have been proposed as a means for improving the quantum efficiency of lasers [24].
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There is a direct analogy between the quantum states in a crystal and microwave frequencies in
a (much larger) scaled lattice of dielectric obstacles or voids in a solid dielectric [25]. The
dielectric structure will have a frequency stop band corresponding to the photonic band gap.
An example bandgap structure is an array of layered dielectric rods. Figure 14 shows
the cross sectional geometry of one rod in an array whose transmissivity was measured by Kelly
et. al. [26]. The array was up to ten layers of these rods in a 12.7 mm x 12.7 mm square
lattice. The acrylic tubes have relative permittivity e,=2.55 and inner and outer radii of b =
3.175 mm and ¢ = 4.763 mm. Each may have a pyrex core with radius a = 3.0 mm and
e,=4.2. There is a small air gap between the pyrex core and the acrylic sheath. In Kelly’s
measurements, seven of the rows had pyrex cores and the last three had the acrylic tubes only.
For purposes of the finite element calculations, the air gap is ignored and the acrylic tube
is assumed to have an inner diameter of 6.0 mm. The tetrahedron mesh for a single rod is
shown exploded in Figure 15a. Note that since pyrex has a refractive index of approximately
2, the mesh in that material is twice as dense as in the air region. Figure 15b shows the unit

cell mesh for a four-layer structure. Only the very narrow end of the mesh is subject to the
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Figure 14. Layered Dielectric Rod used to Simulate Photonic Band Structure
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Figure 15. Tetrahedron Mesh for Layered Dielectric Rods: (a) Exploded View
of Single Rod; (b) Unit Cell Mesh for Four-layer Structure

incident field and periodic radiation conditions.

Figure 16 is a comparison between the HFEM calculations and the measurements for the
case in which the incident electric field is aligned parallel to the rods. The calculations reveal
quite clearly the presence of a stop band in the region from 7 GHz to 10 GHz, which was
predicted by plane wave theory [26],[27]. The measurements only go down to -20 dB transmiss-
ivity in the stop band for either or both of two reasons: (1) the structure measured was fairly
small in width and height, which is not truly representative of an infinite structure; or (2) the
measurement antennas were fairly close to the structure’s surfaces, so that the incident and
transmitted fields were not representative of plane waves.

As was the case with the wire grid array, this lattice of rods is inherently a two-dimen-
sional problem. Hence it is inefficient to model it with a 3-dimensional code, unless the trans-

mission and reflection at arbitrary incidence angles and polarizations is important. However,
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Figure 16. Comparison of Hybrid Finite Element Method Calculations
and Measurements for 10-layer Dielectric Rod Array

the most interesting photonic band structures are crystal lattices, which cannot be represented
as 2-dimensional structures. The hybrid finite element method clearly has the capability of
dealing with general 3-dimensional bandgap structures, and the potential to supplant tedious and

expensive measurements.

5.5. Reinforced Concrete

Reinforced concrete walls are usually made up of regular lattices of steel reinforcing bars
in the center of the concrete layer. Their level of protection from radio frequency energy, or
shielding effectiveness, has much more to with the reinforcing bars than the concrete itself.
There is tremendous variation in the electrical properties of concrete, depending mainly on its

water content, but it does not usually attenuate RF energy very well by itself. Hence, predicting

the shielding effectiveness of reinforced structures depends on being able to predict the trans-
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missivity of the reinforcing lattice. This test case assumes a lattice of reinforcing bars with 4"
spacings in both directions, and 1/8" bar diameter. The effect of the spacing between bars will
be shown to make a difference under some conditions of incidence angle and polarization. |

Figure 17 shows one half of the tetrahedron mesh representation for a single unit cell
with 1/8" spacing between the vertical and horizontal bars. Again, the conductor interiors are
represented as voids in the mesh. The maximum mesh edge length is .4", so that it is valid for
frequencies up to 3 GHz. The edge length is smaller in the vicinity of the bars to ensure that
there is no more than 20% deviation from the actual surface curvature. The surrounding cells
may be assigned any value of complex permittivity. For these calculations, the permittivity was
set to (1.0,0.0), representing air. The effect of a real permittivity greater than 1 will be to shift
the results down in frequency. The effect of an imaginary part greater than O will be to reduce
the transmitted power. A second mesh, not shown, models a case in which the horizontal and
vertical bars just touch each other at a single point.

Figure 18 compares two sets of calculations for the two cases for normal incidence.
Evidently, when the wave is polarized parallel to either set of bars, the transmissivity is the
same whether or not they are electrically connected. However, for obligue incidence, the
situation is quite different, as Figure 19 attests. Here, the wave is incident from
(6g,90)=(30°,45°), with transverse electric polarization (electric field polarized 45° to both sets
of bars). When the bars are connected, circulating currents are induced that create a resonance
condition near 1.75 GHz, with zero co-polarized trahsmission. (There is a small amount of
power transmitted in the orthogonal polarization.) This transmission null will shift in frequency
as the incidence angle changes. Both curves indicate a drop in transmissivity above 2.25 GHz,

but that is due to the fact that the transmitted power is split between the main lobe and a grating
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5.6. Crossed Dipole Frequency Selective Surface

The crossed dipole FSS illustrated in Figure 2 is
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Figure 17. Cutaway of One Half of Tetrahedron Mesh for Reinforced Concrete Unit Cell

lobe. The grating lobe power is not accounted for in this calculation. The total transmissivity,

including the grating lobe, will be near unity above 2.25 GHz.

the only test case attempted so far for
which satisfactory results have not yet been obtained. The crossed dipole array was an early
attempt at a "dichroic" surface that would reflect a single frequency and pass all others. The

intended use was a subreflector for a large parabolic dish. The subreflector would pass energy
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from a feed located at the dish’s focus, while reflecting that from a feed located in the center
of the dish. Unfortunately, the crossed dipole element was deficient because at off broadside
scan angles it has an anti-resonance, sometimes called a "Wood’s anomaly" [28]. Figure 20
shows the element and lattice dimensions and the unit cell outline. Figure 21 compares the
HFEM calculations with method of moment results from Cwik & Mittra [29]. The effect
observed when attempting this problem with HFEM is a shift in the resonant frequency and a
broadening of the frequency response. The grid used for the HFEM results is shown in Figure
22, which includes two air layers on each side of the dipole elements. The grid had a mesh
edge length less than A/30 in the plane of the dipoles at the frequency where the anti-resonance
occurs. Even though that would ordinarily be an excessively fine mesh, it is evidently not fine
enough in this case. Accurate results for such cases may require the development of special
singularity finite elements. Although such elements are common in mechanical engineering

applications, they are only beginning to see development for electromagnetic problems.

5.7. Storage, Execution Time and Accuracy Issues

Table I shows the sizes of each of the test cases in terms of the mesh sizes and storage
required. In all cases, the storage needed for the matrix, both sparse and dense parts, is less
than 4 Mb (Megabytes) using single-precision complex representation (8 bytes per number, or
"word"). The total number of mesh edges is almost always less than 1.5 times the number of
mesh cells. For the sparse matrix, SI, there are typically 15 or less entries per matrix row. The
number of edges in the two radiation boundaries is always less than 8 °dxodylfz, where £ is the
mesh edge length. An exception is when part of the radiation boundary is filled with conducting

surfaces, as in the case of the inductive grid (see Fig. 8). In summary, the storage required for
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Figure 20. Crossed Dipole FSS Element and Lattice Geometry
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Figure 22. Tetrahedron Mesh for Crossed Dipole Frequency Selective Surface
Test Case: Two Air Layers Surround the Conducting Elements

any problem may be estimated a priori as

d.d,
12

(83)

Matrix Storage (words) < (15)(1.5) N, + (8)

where N, is the number of mesh cells.

Table II summarizes the execution time for each case using a SparcStation™-20 comput-
er. These are averages over all of the frequencies or angles for which results were shown in
the previous sections. Each new angle or frequency requires a separate matrix fill and solve.

It is immediately apparent that the biconjugate gradient solver has a distinct advantage, converg-
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Table I. Mesh Sizes and Storage Requirements for Test Cases

Cells | Edges | Edges Matrix dxdy/izz Matrix
in Entries Storage
TEST CASE I["Z_,E"Z + | per Row (MB)
Inductive Screen 1827 2244 290 13 81 .57
Wire Grid Array 5517 7030 816 14.7 122 3.49
Artificial Dielectric
3 Layers 5457 6670 212 14.6 28 .96
§ Layers 9095 11046 212 14.7 28 1.48
Bandgap Structure 22280 | 29041 82 15.2 13 3.56
Reinforced Concrete
Separated Bars 7984 9511 664 14.9 100 2.9
Connected Bars 6164 7340 664 14.6 100 2.62
Crossed Dipole FSS 4659 5696 352 14.8 50 1.16
Table II. Iterations and Execution Times for Test Cases
Edges Edges in Fill Iterations/N Solve Time
TEST CASE MmN A Time (min)
M) (min) | CGM BCGM | CGM BCGM
Inductive Screen 2244 290 1.62 .355 057 | 1.87 .30
Wire Grid Array 7030 816 16.5 1.72 .084 | 147.5 7.38
Artificial Dielectric
3 Layers 6670 212 3.63 .508 .063 16.7é 77 2.53
5 Layers 11046 212 7.30 .699 0551493 4.07
Bandgap Structure 29041 82 6.55 .792 072 | 349 319
Reinforced Concrete
Separated Bars 9511 664 .094 .78 .094 | 87.2 10.6
Connected Bars 7340 664 162 | .90 162 | 64.7 13.1
Crossed Dipole FSS 4659 352 19.8 4.22 --— | 415.1 —
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ing 5-12 times faster than the conjugate gradient solver. Unfortunately, the BCGM did not
converge at all for several frequencies of the bandgap structure test case. It also failed to
converge for any frequency of the crossed dipole FSS test case.

Figure 23 shows the convergence vs. frequency for the bandgap structure. CGM’s
variation is fairly regular, suggesting a systematic dependence on some feature of the problem
that has not yet been identified. BCGM’s variation with frequency is more random. The circles
along the top of the graph mark those frequencies where BCGM failed to converge.

These execution statistics show that the HFEM technique can solve many practical
problems in a reasonable time on a typical engineering workstation. A final important note is
that its efficiency is much poorer than moment methods. Its use is justified when the problem

geometry includes features that MoM cannot model.
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Figure 23. Number of Iterations vs. Frequency for Bandgap Structure Test Case
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6. CONCLUSIONS AND RECOMMENDATIONS

The objective of this project in computational electromagnetics was to develop a method
for predicting reflection and transmission from general periodic structures. The hybrid finite
element method was selected because of its inherent ability to deal with inhomogeneous dielec-
trics and arbitrarily-oriented conductors. This report has discussed the theoretical basis in terms
of the electric field wave equation with appropriate periodic boundary conditions, its translation
into a numerical problem and matrix solution, its implementation in a general-purpose computer
program, and finally, its results for a wide variety of validation cases. Those results show that
the method is effective and reliable, although its efficiency relative to other methods is problem-
dependent. The vé.riety of validation cases accomplished with a single computer code demon-
strates that HFEM is the most versatile tool to date for periodic structure analysis.

Recommendations for further work fall into two categories: exploiting the new code for
problems of immediate interest to high power microwave research; and improvements to extend
the code’s range of usefulness and validity. Besides its demonstrated utility for reinforced
concrete walls, the code may also be used to predict the shielding effectiveness of brick walls,
including air pockets, perforated metal grids such as those used for equipment enclosures, and
radomes and canopies that incorporate metallic grids for interference suppression. Artificial
dielectrics may also be interesting for HPM antenna design, possibly replacing heavier natural
dielectric lenses. But since the artificial dielectrics cause the fields passing through to become
concentrated in between conducting elements, they may experience dielectric breakdown at much
lower field levels. HFEM provides a unique tool for examing the electromagnetic field distribu-
tion in candidate structures and determining which are likely to be most useful.

RF shielding by composite materials made of graphite fibers embedded in a dielectric
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material such as epoxy will become interesting in the future. For modeling those structures, it
is more efficient to represent the graphite fibers as conducting filaments with a surface resistivi-
ty. Hence, a proposed extension to the computer code is to add conductors with finite conduc-
tivity. Second, it was observed that some problems experienced very slow convergence using
the iterative matrix solvers. Those would benefit from implementation of a direct matrix solver
using LU decomposition. However, that solver must take advantage of the matrix sparsity by
starting with a row/column reordering such as the "minimum degree” algorithm [30] to minimize
matrix fill in as the decomposition proceeds. Third, this periodic structure code is one of a
family of three HFEM codes, the other two of which perform analyses of waveguide devices
[31] and phased array antennas [6]. It is both possible and desirable to combine those capabili-
ties in a single code. Finally, the crossed-dipole FSS test case illustrated a shortcoming of the
present implementation of vector finite element solutions in regions that include field singulari-
ties. As an alternative to very fine meshing, which is computationally expensive, expansion
functions ("singularity elements") that can model the singular behavior are preferred and should

be devloped.
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